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We demonstrate flexible nonlinear frequency up-conversion in high-Q lithium niobate photonic

crystal nanobeam resonators. The high optical Q together with strong optical mode confinement

allows us to observe clear second harmonic generation and sum frequency generation with an opti-

cal power around only tens of microWatts. These demonstrations show that high-Q lithium niobate

photonic crystal nanoresonators are of great promise for nonlinear photonic applications. Published
by AIP Publishing. https://doi.org/10.1063/1.5039948

Lithium niobate (LN) exhibits a significant optical

nonlinearity which has been applied for many important non-

linear and quantum photonic applications.1–6 In general,

nonlinear optical processes rely critically on the optical

intensity, which can be dramatically increased by miniaturiz-

ing the device structure, leading to enhanced nonlinear

conversion efficiency. This great potential has excited signif-

icant interest in recent years to explore nonlinear optics in

on-chip LN photonic devices.7–22 A photonic crystal nano-

cavity exhibits superior capability of confining light in sub-

wavelength dimension; thus it is of great promise for nonlin-

ear photonic application.23–26 It, however, relies crucially on

the optical quality of the device, which imposes a serious

challenge for the LN platform.27–37 Very recently, we have

developed high-quality one-dimensional photonic crystal

nanobeam resonators on the LN platform,38 with optical Q

up to �105 while maintaining a small effective mode volume

of �ðknÞ
3
. This development cleared up the technical obstacle

for nonlinear photonic applications. In this paper, we utilize

this type of device to demonstrate intriguing second

harmonic generation (SHG) and sum frequency generation

(SFG).

The device employed is a high Q one-dimensional pho-

tonic crystal nanocavity (Fig. 1), which is fabricated on an

X-cut LN-on-insulator wafer, with a lattice constant of

545 nm. The suspended nanobeam has a thickness of

250 nm, with a 2-lm gap from the silicon substrate (Fig. 2,

inset). The device structure was patterned using electron

beam lithography and etched by an argon-ion milling pro-

cess. The buried silica layer between the LN nanobeam and

the silicon substrate was finally undercut by diluted hydro-

fluoric acid. More details about the device design and fabri-

cation can be found in our previous paper.38 The device was

tested with the experimental setup shown in Fig. 2, where

a tunable laser was launched into the photonic crystal

nanocavity via a tapered optical fiber which also delivers the

generated light output from the device. The up-converted

light produced from the device is separated from the pump

by a short pass filter before being recorded in a spectrometer.

To prevent temperature-induced drift, the LN chip was

placed on a thermoelectric cooler with a temperature stabi-

lized at 27 �C.

The calibrated transmission is shown in Fig. 1. The

device exhibits a single cavity mode over a broad telecom

band, with an optical Q of 5.43� 104 at the wavelength of

1504.7 nm. When we increased the input power to 310 lW

and scanned the laser wavelength across the cavity resonance,

the cavity transmission shows a clear therm-optic bistability

[Fig. 3(a)], as expected.39 Interestingly, when we scanned the

laser wavelength into the cavity resonance, a bright spot

appears in the center of the device where the nanocavity is

located, as shown in Fig. 3(d). The spot becomes brighter

when the laser wavelength falls deeper into the resonance,

corresponding to increased optical power dropped into the

FIG. 1. Laser-scanned transmission spectrum of the LN photonic crystal

nanobeam resonator used for second harmonic generation. The inset shows

detailed transmission spectrum around the cavity resonance located at

1504.7 nm, with the experimental data shown in blue and the theoretical fit-

ting shown in red. The cavity mode exhibits an intrinsic optical Q of

5.43� 104.
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cavity. Surprisingly, at a drop power of 80 lW, the spot is so

bright [Fig. 3(d)] that it can be seen even by naked eyes.

As the imaging camera has a spectral response around

visible and near infrared spectral range, the appearance of

the bright spot implies the potential generation of second

harmonic. To verify this, we recorded the spectrum of the

emitted light. As shown in the inset of Fig. 4, a clear sharp

spectral line appears at the wavelength of 752.8 nm, directly

corresponding to the second harmonic of the pump wave at

1505.6 nm. To characterize the SHG process, we locked the

laser wavelength half wave into the resonance and recorded

the SHG power as a function of that of the fundamental

wave, which is shown in Fig. 4. Figure 4 shows a clear qua-

dratic power dependence, which further verify the second

harmonic generation, since, as it is known, the SHG output

intensity follows the equation I2x / d2
effI

2
x, where deff is the

effective nonlinear coefficient, and Ix and I2x are the intensi-

ties of the fundamental wave and second harmonic, respec-

tively. We recorded a nonlinear conversion efficiency of

about 4� 10�9/mW for the second harmonic generation. The

low efficiency is likely due to the low efficiency of coupling

the second harmonic to the delivering tapered fiber which is

not designed for use in this spectral range. The visibility of

the bright spot shown in Fig. 3 to naked eyes indicates a

potentially significant generation of the second harmonic.

The reported high efficiencies in other lithium niobate wire

beam structures also show great potential in improving the

efficiency.40,41 Future optimization of the external coupling

of the second harmonic wave would help improve the collec-

tion efficiency.

To demonstrate a SFG process, we select another device

with a lattice constant of 520 nm. The change of lattice con-

stant shifts the photonic band gap of the device. As a result,

two optical modes appears in the telecom spectral range

1470–1540 nm, as shown clearly in the cavity transmission

spectrum in Fig. 5(a). The two cavity modes exhibit similar

FIG. 2. Schematic of the experimental

setup. The shaded area is applied only

for the SFG process. The inset SEM

image shows the real fabricated device.

The pump lights are coupled into the

nano-resonator via a tapered optical

fiber which also delivers the produced

SHG and SFG signal out of the device.

The coupling efficiency is about 50%

for the pump lights in the telecom

band.

FIG. 3. (a) The transmission of the

cavity with the input power of 310 lW

(when the laser scans from blue to red

across the cavity resonance). The dots

show the experimentally recorded

data, and the solid line is used for eye

guidance only. (b)–(g) Optical micro-

scopic images taken at different laser-

cavity wavelength detunings as indi-

cated in (a). The images were taken by

a CMOS camera with a spectral range

below 1100 nm.

FIG. 4. Recorded power dependence of the second harmonic signal as a

function of the power dropped into the fundamental cavity mode. The inset

shows the emission spectrum of the second harmonic.
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high optical Q and have a spatial overlap of about 40%. As

shown in the detailed transmission spectra in Figs. 5(b) and

5(c), the cavity mode 1 at 1477.1 nm exhibits an optical Q

of 4.06� 104, while the mode 2 at 1536.6 nm exhibits an

optical Q of 3.70� 104. To show the SFG phenomena, we

launched one laser (Laser 1) at 1477.1 nm into the cavity

mode 1 and added a second laser (Laser 2) at 1536.6 nm to

the testing setup (Fig. 2) which was launched into the cavity

mode 2. The two lasers were combined together with a

wavelength-division multiplexing filter and then launched

into the device.

We increased the powers of the lasers and monitored the

emission spectrum around the second harmonic wavelengths.

As shown in Fig. 6(a), three sharp spectral lines appear

clearly. The left line locates at the wavelength of 738.6 nm,

directly corresponding to the second harmonic of the pump

mode 1, while the right line at 768.3 nm corresponding to the

second harmonic of the pump mode 2. The central line at the

wavelength of 753.2 nm exactly meets the energy conserva-

tion of the SFG process. The amplitude of the SFG spectral

line grows with the power increasing of either one or both of

the two pump modes. By mapping out the power of the sum

frequency spectral components as a function of the optical

powers of the two lasers, we obtain Fig. 6(b) which plots the

power of sum frequency component as a function of the

product of the two laser powers. It clearly shows a linear

dependence, which agrees well with the theoretical expecta-

tion of ISFG / d2
effI1 � I2.

In conclusion, we have demonstrated second harmonic

generation and sum frequency generation in high-Q lithium

niobate photonic crystal nanobeam resonators. We per-

formed detailed characterizations of the spectral characteris-

tics and the associated power dependence, which agree well

with the theoretical expectation. The demonstration of flexi-

ble nonlinear frequency conversion in these devices shows

great promise of nonlinear photonic applications using high-

Q LN photonic crystal nanoresonators.
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